Object detection

Valeriya Strizhkova 25.01.23

About myself

Valeriya Strizhkova

valeriya.strizhkova@inria.fr

2nd year PhD student @ Inria & 3iA & UCA

Research topics: emotion detection, computer vision, deep learning

Overview

- Introduction
- Performance evaluation
- Two-stage (with proposal) object detectors
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
- One-stage (proposal-free) object detectors
 - YOLO
 - DETR

Object detection

Goal: Localize (Bounding Box) and classify all objects in the image

- Input: RGB image
- Output: set of bounding boxes with category label and confidence

- Input: RGB image
- **Output**: set of bounding boxes with category label and confidence
- The number of objects is not known

Overview

- Introduction
- Performance evaluation
- Two-stage (with proposal) object detectors
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
- One-stage (proposal-free) object detectors
 - YOLO
 - DETR

Performance evaluation. Intersection over Union (IoU)

predicted bbox vs true bbox

Performance evaluation. Intersection over Union (IoU)

predicted bbox vs true bbox

Rank	Correct?	
1	True	
2	True	
3	False	
4	False	
5	False	
6	True	
7	True	
8	False	
9	False	
10	True	

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0	0.4
3	False	0.67	0.4
4	False	0.5	0.4
5	False	0.4	0.4
6	True	0.5	0.6
7	True	0.57	0.8
8	False	0.5	0.8
9	False	0.44	0.8
10	True	0.5	1.0

	Rank	Correct?	Precision	Recall	
	1	True	1.0	0.2	
	2	True	1.0	0.4	
<	3	False	0.67	0.4	
	4	False	0.5	0.4	
	5	False	0.4	0.4	
	6	True	0.5	0.6	
	7	True	0.57	0.8	
	8	False	0.5	0.8	
	9	False	0.44	0.8	
	10	True	0.5	1.0	

Precision =
$$\frac{\text{TP}}{\text{TP + FP}} = \frac{2}{3} = 0.67$$

Recall = $\frac{\text{TP}}{\text{TP + FN}} = \frac{2}{5} = 0.4$

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 个
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 个	0.6 个
7	True	0.57 ↑	0.8 个
8	False	0.5 \downarrow	0.8 —
9	False	0.44 \downarrow	0.8 —
10	True	0.5 ↑	1.0 ↑

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 个
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 个	0.6 个
7	True	0.57 ↑	0.8 个
8	False	0.5 \downarrow	0.8 —
9	False	0.44 \downarrow	0.8 —
10	True	0.5 ↑	1.0 ↑

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 ↑
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 ↑	0.6 ↑
7	True	0.57 ↑	0.8 ↑
8	False	0.5 \downarrow	0.8 —
9	False	0.44 \downarrow	0.8 —
10	True	0.5 ↑	1.0 个

Rank	Correct?	Precision	Recall	
1	True	1.0	0.2	
2	True	1.0 —	0.4 个	
3	False	0.67 🗸	0.4 —	Б
4	False	0.5 \downarrow	0.4 —	Precisi
5	False	0.4 \downarrow	0.4 —	
6	True	0.5 ↑	0.6 个	
7	True	0.57 ↑	0.8 个	
8	False	0.5 \downarrow	0.8 —	
9	False	0.44 \downarrow	0.8 —	
10	True	0.5 个	1.0 个	

Rank	Correct?	Precision	Recall	
1	True	1.0	0.2	
2	True	1.0 —	0.4 个	
3	False	0.67 🗸	0.4 —	
4	False	0.5 \downarrow	0.4 —	
5	False	0.4 \downarrow	0.4 —	
6	True	0.5 个	0.6 个	
7	True	0.57 ↑	0.8 个	
8	False	0.5 \downarrow	0.8 —	
9	False	0.44 \downarrow	0.8 —	
10	True	0.5 个	1.0 ↑	

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 ↑
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 个	0.6 ↑
7	True	0.57 个	0.8 ↑
8	False	0.5 \downarrow	0.8 —
9	False	0.44 \downarrow	0.8 —
10	True	0.5 个	1.0 个

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 个
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 个	0.6 个
7	True	0.57 个	0.8 个
8	False	0.5 🔶	0.8 —
9	False	0.44 \downarrow	0.8 —
10	True	0.5 ↑	1.0 个

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 个
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 个	0.6 个
7	True	0.57 ↑	0.8 个
8	False	0.5 \downarrow	0.8 —
9	False	0.44 \downarrow	0.8 —
10	True	0.5 个	1.0 个

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 个
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 个	0.6 个
7	True	0.57 ↑	0.8 个
8	False	0.5 \downarrow	0.8 —
9	False	0.44 \downarrow	0.8 —
10	True	0.5 个	1.0 个

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0 —	0.4 个
3	False	0.67 🗸	0.4 —
4	False	0.5 \downarrow	0.4 —
5	False	0.4 \downarrow	0.4 —
6	True	0.5 ↑	0.6 个
7	True	0.57 ↑	0.8 个
8	False	0.5 \downarrow	0.8 —
9	False	0.44 ↓	0.8 —
10	True	0.5 个	1.0 个

Rank	Correct?	Precision	Recall	
1	True	1.0	0.2	
2	True	1.0 —	0.4 个	
3	False	0.67 🗸	0.4 —	
4	False	0.5 \downarrow	0.4 —	
5	False	0.4 \downarrow	0.4 —	
6	True	0.5 个	0.6 个	
7	True	0.57 ↑	0.8 个	
8	False	0.5 \downarrow	0.8 —	
9	False	0.8 —		
10	True 0.5 ↑ 1.0			

$$AP = \int_0^1 p(r) dr$$

Rank	Correct? Precision		Recall	
1	True	1.0	0.2	
2	True	1.0 —	0.4 个	
3	False	0.67 🗸	0.4 —	
4	False	0.5 \downarrow	0.4 —	
5	False	0.4 \downarrow	0.4 —	
6	True	0.5 个	0.6 个	
7	True	0.57 ↑	0.8 个	
8	False	0.5 \downarrow	0.8 —	
9	False	0.44 \downarrow	0.8 —	
10	True	0.5 个	1.0 个	

Rank	Correct?	Precision	Recall	
1	True	1.0	0.2	
2	True	1.0 —	0.4 个	0,75
3	False	0.67 🗸	0.4 —	
4	False	0.5 \downarrow	0.4 —	
5	False	0.4 \downarrow	0.4 —	0,25
6	True	0.5 ↑	0.6 个	
7	True	0.57 个	0.8 个	0,00 0,2 0,4 0,6 0,8 1,0
8	False	0.5 \downarrow	0.8 —	- Recall
9	False	0.44 \downarrow	0.8 —	$iggrigarrow AP = rac{1}{11} imes \sum_{r \in 0.0, 0.1,, 1.0} p(r) = rac{1}{11} imes (p(0) + p(0.1) + \ldots + p(1.0))$
10	True	0.5 个	1.0 ↑	

Rank	Correct?	Precision	Recall	1.00 Smoothed DD curve
1	True	1.0	0.2	
2	True	1.0 —	0.4 个	0,75
3	False	0.67 🗸	0.4 —	
4	False	0.5 \downarrow	0.4 —	
5	False	0.4 \downarrow	0.4 —	0,25
6	True	0.5 个	0.6 个	
7	True	0.57 个	0.8 个	0,00 0,2 0,4 0,6 0,8 1,0
8	False	0.5 \downarrow	0.8 —	Recall
9	False	0.44 \downarrow	0.8 —	$AP = rac{1}{11} imes \sum_{r \in 0.0, 0.1,, 1.0} p(r) = rac{1}{11} imes (p(0) + p(0.1) + \ldots + p(1.0))$
10	True	0.5 个	1.0 个	$AP = rac{1}{11} imes (5 imes 1.0 + 4 imes 0.57 + 2 imes 0.5) = 0.75$

Sliding Window Object Detection

Sliding Window Object Detection

• Run **sliding window** of fixed size over the image and extract features for each image

Sliding Window Object Detection

- Run **sliding window** of fixed size over the image and extract features for each image
- Classify each crop
Sliding Window Object Detection

- Run **sliding window** of fixed size over the image and extract features for each image
- Classify each crop
- Iterate over multiple aspect ratios and scales

Problem: Object detectors often output many overlapping detections.

Problem: Object detectors often output many overlapping detections.

Problem: Object detectors often output many overlapping detections.

- 1. Select next highest-scoring box
- Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections.

- 1. Select next highest-scoring box
- Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections.

- 1. Select next highest-scoring box
- Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections.

- 1. Select next highest-scoring box
- Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

COCO Object Detection Average Precision (%)

Late 2017

Object Detection with Deep Neural Networks Slide Credits: Ross Girshick

Overview

- Introduction
- Performance evaluation
- Two-stage (with proposal) object detectors
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
- One-stage (proposal-free) object detectors
 - YOLO
 - DETR

Generalized framework

R-CNN [1] in the Generalized Framework

R-CNN: Problems

• Heavy per-region computation (2000 full network evaluations)

R-CNN: Problems

- Heavy per-region computation (2000 full network evaluations)
- No computation / feature sharing

R-CNN: Problems

- Heavy per-region computation (2000 full network evaluations)
- No computation / feature sharing
- Slow region proposal method adds to runtime

Backbone:

- Use any standard convolutional network as "backbone" architecture, e.g. AlexNet, VGG, ResNet, Inception, ResNeXt, DenseNet, ...
- Remove global pooling, so output spatial dimensions are proportional to input spatial dims
- A good network exploits the strongest recognition backbone (features matter!)

Key innovation in SPP-net [He et al. 2014]

Key innovation in SPP-net [He et al. 2014]

Fast R-CNN problems

- Heavy per-region computation (2000 full network evaluations)
- No computation / feature sharing
- Slow region proposal method adds to runtime
- Generic proposal method has low recall

Faster R-CNN: Region Proposal Network (RPN)

RPN: Region Proposal Network

Faster R-CNN: Region Proposal Network (RPN)

RPN: Region Proposal Network

Faster R-CNN: Region Proposal Network (RPN)

RPN: Prediction (on object)

[1] Ren, He, Girshick and Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS, 2015.

Faster R-CNN

[1] Ren, He, Girshick and Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS, 2015.

Summary on two-stage object detectors

"Slow" R-CNN:

Apple Appl

Run CNN independently for each region

Apply differentiable cropping to shared image features

Fast R-CNN:

Faster R-CNN:

Compute proposals with CNN

Overview

- Introduction
- Performance evaluation
- Two-stage (with proposal) object detectors
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
- One-stage (proposal-free) object detectors
 - YOLO
 - DETR

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.

SSD: Single Shot MultiBox Detector. ECCV 2016

YOLO timeline from 2015 to 2022

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

	YOLO								YOLOv2
batch norm?		\checkmark							
hi-res classifier?			\checkmark						
convolutional?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
dimension priors?						\checkmark	\checkmark	\checkmark	\checkmark
location prediction?						\checkmark	\checkmark	\checkmark	\checkmark
passthrough?							\checkmark	\checkmark	\checkmark
multi-scale?								\checkmark	\checkmark
hi-res detector?									\checkmark
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Figure 4: Accuracy and speed on VOC 2007.

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28 imes 28
Convolutional	128	1×1	28 imes 28
Convolutional	256	3×3	28 imes 28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1 × 1	7×7
Avgpool		Global	1000
Softmax			

Table 6: Darknet-19.

YOLO9000: Better, Faster, Stronger, CVPR 2017

	Туре	Filters	Size	Output
	Convolutional	32	3 × 3	256×256
	Convolutional	64	$3 \times 3 / 2$	128 × 128
	Convolutional	32	1×1	
1×	Convolutional	64	3 × 3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1×1	
2×	Convolutional	128	3 × 3	
	Residual			64 × 64
	Convolutional	256	3×3/2	32 × 32
	Convolutional	128	1×1	
8×	Convolutional	256	3 × 3	
	Residual			32 × 32
	Convolutional	512	3×3/2	16 × 16
	Convolutional	256	1×1	
8×	Convolutional	512	3 × 3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1×1	
4×	Convolutional	1024	3 × 3	
	Residual			8 × 8
,	Avgpool		Global	
	Connected		1000	
	Softmax			

Table 1. Darknet-53.

Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

Table 2. Comparison of backbones. Accuracy, billions of operations, billion floating point operations per second, and FPS for various networks.

Figure 1: Comparison of the proposed YOLOv4 and other state-of-the-art object detectors. YOLOv4 runs twice faster than EfficientDet with comparable performance. Improves YOLOv3's AP and FPS by 10% and 12%, respectively.

Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao. YOLOv4: Optimal Speed and Accuracy of Object Detection

Figure 3: EfficientDet architecture – It employs EfficientNet [39] as the backbone network, BiFPN as the feature network, and shared class/box prediction network. Both BiFPN layers and class/box net layers are repeated multiple times based on different resource constraints as shown in Table 1.

Figure 2: The YOLOv6 framework (N and S are shown). Note for M/L, RepBlocks is replaced with CSPStackRep.

Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang, Linyuan Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, Xiaolin Wei. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications

90

Figure 1: Comparison of state-of-the-art efficient object detectors. Both latency and throughput (at a batch size of 32) are given for a handy reference. All models are test with TensorRT 7 except that the quantized model is with TensorRT 8.

Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang, Linyuan Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, Xiaolin Wei. <u>YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications</u>

91

Figure 1: Comparison with other real-time object detectors, our proposed methods achieve state-of-the-arts performance.

- A key improvement in YOLO v7 is the use of a loss function called "**focal loss**"
- **Focal loss** down-weight the loss for well-classified examples and focus on the hard examples
- YOLO v7 also has a **higher resolution** than the previous versions, it processes images at a resolution of 608x608 pixels, which is higher than the 416x416 resolution used in YOLO v3
- YOLO v7 can process images at a rate of 155 frames per second (the original baseline YOLO model was capable of processing at a maximum rate of 45 frames per second)

Figure 2: Extended efficient layer aggregation networks. The proposed extended ELAN (E-ELAN) does not change the gradient transmission path of the original architecture at all, but use group convolution to increase the cardinality of the added features, and combine the features of different groups in a shuffle and merge cardinality manner. This way of operation can enhance the features learned by different feature maps and improve the use of parameters and calculations.

(a) concatenation-based model (b) scaled-up concatenation-based model (c) compound scaling up depth and width for concatenation-based model

Figure 3: Model scaling for concatenation-based models. From (a) to (b), we observe that when depth scaling is performed on concatenation-based models, the output width of a computational block also increases. This phenomenon will cause the input width of the subsequent transmission layer to increase. Therefore, we propose (c), that is, when performing model scaling on concatenation-based models, only the depth in a computational block needs to be scaled, and the remaining of transmission layer is performed with corresponding width scaling.

Figure 5: Coarse for auxiliary and fine for lead head label assigner. Compare with normal model (a), the schema in (b) has auxiliary head. Different from the usual independent label assigner (c), we propose (d) lead head guided label assigner and (e) coarse-to-fine lead head guided label assigner. The proposed label assigner is optimized by lead head prediction and the ground truth to get the labels of training lead head and auxiliary head at the same time. The detailed coarse-to-fine implementation method and constraint design details will be elaborated in Apendix.

Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao.

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

9 Ultralytics YC	DLOv8 Do	cs Q Search	Witralytics/ultralytics ☆ 2.9k ♥ 391 ☆ ☆ 391 ☆ ☆
Ultralytics YOLOv8 Docs Home Quickstart		Home D	Table of contents A Brief History of YOLO Ultralytics YOLOv8
Tasks Detection Segmentation Classification Usage CLI Python Predict Configuration Customization Guide	~	Ultralytics CT passing DOI: 10.5281/zenodo.7347926 @ docker pulls: 225 Quence CT passing DOI: 10.5281/zenodo.7347926 @ docker pulls: 225 Quence CT passing DOI: 10.5281/zenodo.7347926 @ docker pulls: 225	
Ultralytics HUB iOS and Android App Reference Engine Model	* *	Welcome to the Ultralytics YOLOv8 documentation landing page! Ultralytics YOLOv8 is the latest version of the YOLO (You Only Look Once) object detection and image segmentation model developed by Ultralytics. This page serves as the starting point for exploring the various resources available to help you get started with YOLOv8 and understand its features and capabilities.	
Trainer Validator Predictor Exporter Results ultralytics.nn Operations		The YOLOv8 model is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and image segmentation tasks. It can be trained on large datasets and is capable of running on a variety of hardware platforms, from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or new to the field, we hope that the resources on this page will help you get the most out of YOLOv8. For any bugs and feature requests please visit GitHub Issues. For professional support please Contact Us.	

https://docs.ultralytics.com

Fig. 1: DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a transformer architecture. During training, bipartite matching uniquely assigns predictions with ground truth boxes. Prediction with no match should yield a "no object" (\emptyset) class prediction.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. End-to-End Object Detection with Transformers. ECCV 2020

DFTR

DETR

Fig. 2: DETR uses a conventional CNN backbone to learn a 2D representation of an input image. The model flattens it and supplements it with a positional encoding before passing it into a transformer encoder. A transformer decoder then takes as input a small fixed number of learned positional embeddings, which we call *object queries*, and additionally attends to the encoder output. We pass each output embedding of the decoder to a shared feed forward network (FFN) that predicts either a detection (class and bounding box) or a "no object" class.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. End-to-End Object Detection with Transformers. ECCV 2020

DETR

Table 1: Comparison with Faster R-CNN with a ResNet-50 and ResNet-101 backbones on the COCO validation set. The top section shows results for Faster R-CNN models in Detectron2 [50], the middle section shows results for Faster R-CNN models with GIoU [38], random crops train-time augmentation, and the long 9x training schedule. DETR models achieve comparable results to heavily tuned Faster R-CNN baselines, having lower AP_S but greatly improved AP_L. We use torchscript Faster R-CNN and DETR models to measure FLOPS and FPS. Results without R101 in the name correspond to ResNet-50.

Model	$\operatorname{GFLOPS}/\operatorname{FPS}$	#params	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	AP_{L}
Faster RCNN-DC5	320/16	$166 \mathrm{M}$	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. <u>End-to-End Object Detection with Transformers</u>. ECCV 2020

